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AbslracL Field-theoretic models for fields laking values in quantum groups are 
investigated. First we consider SU,(Z) n model (q  real) expressed in terms of basic 
notions of non-commutative differential geometry. We discuss the case in which the a 
models fields are represented as producu of conventional # fields and of the coordinate- 
independent algebra. An explicit example is provided by the U,(2) n model with 
gN = 1, in which case quantum matrices U,(2) are realised as 2N x 2N unitaly 
matrices Open problems are pointed out. 

1. Introduction 

The appearance of nonammutative entries in some matrices describing quantum 
inverse scattering methods for spin systems (see, e.g. [1-3]) has led to the introduction 
of the concept of a quantum matrix group [MI. From the algebraic point of view 
the description of a quantum group as a quasitriangular Hopf algebra was first given 
by Drinfeld [q, with the basic object being the non-commutative algebra of functions 
on a quantum group. The quantum extensions of all classical matrix groups (Cartan 
A,, B,, C, and D, series), describing the generators of Drinfeld’s quantum algebra 
have also been given 141. 

Moreover, the quantum counterparts of the homogeneous coset spaces (e.g.: 
spheres, S;; projective spaces, CP,(n);  etc) have also been found [4,8-IO]. 

In this paper we will consider fields taking values in quantum groups and we 
will discuss the corresponding U models. Let us recall that the usual u-field +(x) 
describes the mappings from the coordinate manifold S into the target space M (see 
e.g. [ll]). In principle we can ‘q-deform’ the target space M (M - M , )  as well as 
the coordinate manifold S (S + Sq), i.e. we can introduce three kinds of U models: 

(a) with quantum deformation of the target manifold 

4:(x) : Z E S  + +:EM, (1.1) 

where the index a ennumerates the local coordinates on M,. 
(b) with quantum deformation of the base manifold 

4a(xq) : xq E s, - +a E M .  ( 1 4 
1 1  On leave of absence from the Instilute of Theoretical Physics, Universily of Wroclaw, ul. Cybulskiego 
36, 50-205 Wroclaw, Poland. 
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(c) with both manifolds deformed 

Let us add that, analogously, there exist three types of supersymmetric models, 
corresponding to the three types of mappings, and that we believe that in the near 
future, the quantum group U models of all three types will be studied. In the present 
paper we will discuss mainly the case (1.1). 

The description of quantum group U models can be presented in two different 
ways: 

(1) We can consider quantum group U fields as fields satisfying at a point x E S 
the quantum algebra, and so we can study the general properties which follow from 
the basic formulae of non-commutative differential geometry on quantum groups. 
Such an approach, which we shall call algebraic, was recently used by Arefeva and 
Volovich [12-131. 

In the algebraic formulation of a quantum group U model one can repeat the 
major part of the geometric formulation of the standard approach to the U models 
(Cartan forms, Cartan structure relations, algebra of the covariant derivatives etc), 
provided that the exchange relations between quantum group valued U fields and 
their derivatives are properly introduced. For the SU,(2) case the formulae of non- 
commutative geometry are well known (see e.g. [5, 141) and so in the next section we 
shall present the algebraic formulation of the SU,(2) U model. It appears that the 
effective use of the algebraic formulation requires several new developments, e.g. 

(i) One should h o w  the relations between quantum group U fields and their 
variations. Only when these are hown  one can derive the field equations from the 
action. 

(ii) Any physical interpretation of the algebraic U model requires a construction 
giving real numbers. At present such a construction is not hown; in particular, no 
proper distinction can be made between a classical and a quantum theory. 

(2) In the main part of the paper we shall assume that the quantum group 
G, U fields @,(z) are products of 'ordinary' functions fa(.) E H and of the x 
independent algebra A related to the quantum group algebra. This approach gives 
us expressions which belong to the tensor product H, 8 TA, where for an n x n 
matrix quantum group U model the first part H, is parametrised by an n x n matrix 
of 'classical' fields (suitably constrained standard GL( n) o fields), and ,TA carries the 
realization of the algebra A. If A = f (  G,), the natural realization on the polynomial 
basis of the functions on the quantum group is infinite dimensional, and for q real it 
can not be reduced to a finite dimensional case. In the second part of section 2 we 
will present our discussion of the SU,(2) quantum group U model for the solutions 
satisfying the separability condition described above. 

The realization TA can be described by finite matrices in one case: when q is 
complex and qN = 1 (q  = ei2n/N). It is worth mentioning that some realizations of 
the quantum groups for q being the Nth root of unity have recently been found to 
have physically relevant applications (see e.g. [15-17). It appears, however, that the 
quantum deformations O,(N) and SU,(N) of the semi-simple groups O ( N )  and 
SU( N) which are the natural candidates for quantum group U fields, do not permit 
complex q [4]. 

The simplest example of a compact quantum group with q N  = 1, the quantum 
group U,(2), will be considered in section 3. There, we will first show that the group 
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U9(2) for complex d u e s  of q can be obtained as a special case of a two-parameter 
deformation GL,,,(2, C) of the 2 x 2 general h e a r  group. Then, using the results 
on the matrix realizations of GL,(N) for qN = 1 [l8,19] we will embed the U9(2) 
U model with qN = 1 (‘anyonic U model’) into the conventional U(2N) U model. 
It appears that when we use such a representation we describe solutions that, for 
D = 1 (see equation (3.2)), satisfy the assumptions made by Arefeva and Volovich in 
their discussion of quantum group sigma models [12]. Finally, some open problems 
are discussed in section 4. 

2. SU,(2) Q model 

21. Algebraic formulation 

Let us first introduce the quantum group SL9(2, C) as the following Hopf bialgebra 
(q complex) [4]: 

(a) Multiplication: 

ab = qba ac = qca cd = qdc 

b c =  cb bd = qdb 
ad - qbc = da - q-lcb = 1. 

@) Coproduct 

A ( :  r;) = (: :).(: :) 
(c) Inverse (antipode) and co-unit 

For q real we can introduce the following unitarity condition. For 

we put 

which defines the SU,(2) quantum group, the matrix elements of which have the 
form 
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In this case the relations (2.1) take the form 

ac =qca ac* = qc*a cc* I c*c 

aa*+q*cc* = 1 
(2.7) 

a*a + c*c = 1. 

In order to define a quantum group d model we introduce the Cartan one-forms 
on SU,(2) 

R = U'dU c-) R;, = UijdUjk. (2.8) 

The formula (2.8) describes the left-invariant one-forms (R = 0,). The right-invariant 
forms are given in terms of the left-invariant forms in the same way as in the q = 1 
case, and so are given by 

R R  = -UR2,U'. (29) 

We also have 

(2.10) 

For the Cartan one-form (2.8) we can introduce the linear basis. Following the so- 
called 40, bi-covariant calculus of Woronowin [S, 141 we can choose R = wArA 
(A = 0,1,2,3), where 

(2.11) 

and 

where I denotes the unit matrix. 
normalisation (compare with [S, second paper, p 1081). 

If we now write 

Observe that we have chosen a non-singular 

The SU9(2) fl fields are then introduced by the mapping (1.1) Le. Uii + U,,(x). 

= U A ~ T A  

the action of the SU9(2) model can be written as 

(2.12) 
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where G t B  = TI (rArB) is given by 

The Cartan forms wA describe the U model currents. We see that the contribution 
of the scalar current wo vanishes in the limit q -+ 1. vanishes at q = 1 by the 
choice of 7”. This choice is consistent as in this limit we get the SU(2) model and 
no U( 1) current. 

We can now consider U fields and take currents wA as our basic variables. Due 
to the unitarily (0 = U t  dU = -dU t U) we can rewrite the action (2.13) as 

- J au:,auji - J a(su);, au,, 
a l p  a x p  a l p  ax , .  S =  dx-- - ddx 

Denoting 

(2.16) 

we obtain 

= /ddx(A:pA+ + qzC,pC*’p + C;C+ + A,,A*+ (217) 

where the field operators A( x ) ,  A*(x), C ( X ) ,  C*(x) satisfy the algebra (27) at every 
coordinate point x. But as we have the operators and their derivatives, we need to 
know the algebra at points x and x + E, with E infinitesimal. ’lb do this we have 
to determine the complete algebra for our basic fields, Le. for U;, and wA. This 
algebra, in the case of SU,(2), is known in an explicit form [S, 141. 

22 Separable realizations 

Let us assume that 

i , j =  1,2 

where the functions f i j (x)  are classical and Oij describe the coordinate independent 
operators. Further, let us assume that the quantum U field (2.18) satisfies the unitarity 
condition U U t  = U t U  = 1. 

We shall consider here only two cases: 
(a) The operators Oij describe the generators of the SU,(2) quantum algebra 

In this case the unitarity condition, with fl l  = f, fi2 = g, fZl = h, fu = k and 
(2.7) separately (obviously the total Uij should). 

e = a,, is 
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We see that for q # 1 we have 

If? = IglZ = 1 (2.20) 

( p )  The functions f i j  (I) describe the SU(2) m fields and so besides the conditions 
ie. we obtain the U( 1) x U( 1) classical U model. 

in the first line of (2.19) they satisfy also 

lflZ t 1912 = 1. 

Then, we can write (2.18) as an SU,(2) matrix 

where A and C do not depend on I. Thus we obtain for A, At, C and Cf the 
relations of the first line of (2.7) and 

whose solutions exist only for q = 1, and only when AAt = AtA = CCt = 1. 

case a) or p), is too restrictive and should be extended to, say 
Thus, in conclusion, we see that the assumption (2.18) for q real and with either 

n 

where 0;;) describe a polynomial basis of the ring of noncommutative functions 
f(G,) (see e.g. [20]). Such an assumption corresponds to the considering of the 
mapping (1.2) with S, = S la G,, and M = GL(2). 

23. Embeddings in h e  U( CO) U model 
Another way of representing the operators A, At, C and Ct of (2.17) corresponds 
to the use of the parameter dependent irreducible representations of the functions 
f(SU,(2)) in a separable Hilbert space H. Promoting the parameters to the 
functions generates an mdimensional CT model. 

The irreducible representations of the SU,(Z) algebra in a Hilbert space are 
known [5,20]. There are only 2 series of irreducible representations of f(SU,(2)), 
each one parametrised by the parameter of the unit circle t = ei4 E S2. One series 
is degenerate, as for it only the element a of (27) is represented in a non-trivial way. 
The other irreducible representation is non-trivial. It is described by the operators 
p+ which act as 

where eh,  for k = 0,1, .  . .CO describes an orthonormal basis in H. 

the U(1) U field into U(CO), in analogy with the separable realizations (218). 
If we now replace 4 by a function +(I) we obtain from (2.25) the embedding of 
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3. U,(2) U model for q N  = 1 

In order to obtain a solution of a quantum group U model in the separable form (see 
(2.18)), it will turn out that we should consider the deformation parameter q as being 
complex and satisfying lql= 1. Then, if q equals the Nth m t  of unity (qN = 1) one 
can represent the operators oij by N x N dimensional matrices (see [18,19]). As we 
want to consider a quantum group U model defined on a quantum compact group, 
we shall discuss here the simplest such compact quantum poup  permitting complex 
values of q, namely, the quantum group U9(2). 

3.1. Quantum group U,(2) 
We shall define the quantum group U9(2), for complex q, as a real form of a two 
parameter deformation of GL(2, C), denoted by GL,,,(2) 1211. Then we will know 
that the real Hopf algebra is valid for our U,(2). 

The formulae (2.1) have to be extended and they become 

ab = pba ac = qca cd = pdc 

pbc = qbc bd = qdb (34  a d  - da = ( p  - q-')bc 

with a coproduct still defined by (2.2). If we now introduce the determinant 

D = ad - pbc = ad - qcb = da - p-lcb = da - q-lbc (34 

then one can check h.om (3.1) that the following relations hold: 

[ D , a ] = O  [ D , d ] = O  

qDb = pbD pDc = qcD. 
(3.3) 

We see that only if q = p we can put D = 1, Le. we have the quantum group SL,(2) 
defined by (2.1). 

The quantum group GLps(2) is a genuine Hopf algebra for any complex q and 
p. In particular, the antipode of 

U=(: I;) (3.4) 

is given by the formulae 

where we have used DD-' = D-ID = 1. If we now impose the unitarily condition 
U+ = S( U), i.e. 

a* = D-'d = dD-' 
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we find as the consistency conditions, that 

D' = D-' P = q* 

and so obtain the following Uq(2) algebra 

ac = qca ac* = q*c*a c*c = cc*. 

Moreover, from (3.2) and (3.6) we find that 

a*a + c*c = 1 

The quantum matrix U,(2) given by 

aa* + Iq12cc* = 1. 

a -q*c*D 
U = (  c a * D  (3.10) 

It describes the generators of the Hopf algebra with standard comultiplication rule 

A(U,,) = U i j @ U j k  (3.1 1) 
j = l J  

and the following antipode condition (using qD-'c = q*cD-l) 

(3.12) 

It should be stressed that when q is not real we cannot have D commute with the 
elements of the matrix, since if it did equations (3.6) and (3.7) would have implied 
that q is real. Also it should be added that even for IpI = 1 but with Q f 1, we 
cannot put D = 1 as in this case (3.9) would give 

a*a f c*c = 1 a*a = aa". (3.13) 

3.2. 2N x 2N malrir realization of Uq(2) for qN = I 

If q N  = 1 the elements a, c, a* and c* can be represented by N x N matrices. 
Following [lS, 191 we introduce the following matricest 

0 1 ... 0 
(3.14) 

N 
1 0 ... 0 ... 

These matrices satisfy PQ = qQP,  and with q = exp(2?ri/N) they generate the 
algebra of all N x N matrices. Moreover, as QN = PN = 1 we find that Qt = QN-' 
and Pt = PN-I and, as is easy to see, 

q i j ~ ' p i  = p j Q i ,  (3.15) 

t The matrices (3.13) were introduced earlier by Eguchi and Kawai in their mnstrudion of the 'twisted 
Eguchi-Kawai' models [ZZ]. 
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This observation suggests that if we restrict ourselves to the qs being the Nth root of 
identity, we can seek a solution of our conditions (3.8) and (3.9) with the elements of 
U given in terms of various linear combinations of the products of Qs and Ps. The 
simplest of such solutions corresponds to the case when a Q and c ,., P and so is 
given by 

(3.16) 

where U and rl, are real fields. Then it is easy to check that all conditions (3.7) and 
(3.8) (with I Q ]  = 1) are satisfied if we choose 

(3.17) D = eic p’ 

where [ is a real field. Hence a 2N x 2N matrix (3.10) with its entries given by 
(3.16) and (3.17) is a representation of U , ( 2 )  for q = exp(b i /N) .  

In the following we shall express the matrix (3.10) as a product of two matrices 
U = TD, Ut  = DfTt, where 

sin sei+ P 
cos aei4 Q 

-q* cos ae-id Qt 
sin ae-’+ Pf T =  ( 

and 

The basic Lagrangian then becomes 

L = - iTr(Uta,U)(UtWU) 2 

(3.1s) 

(3.19) 

(3.20) 

with the trace taken with respect to the U,@) matrix indices as well as the ones 
describing the realizations (3.18) and (3.19). One can wite 

0.’ = uta’u = DtL’D + Ijta’b (3.21) 

where 

We obtain 

1’’ = i(+,” sin’ LY + 4,’ COS’ cy) 

and 



310 Y Frishman et a1 

where 

Hence L’ can be resolved into 

and so we ObSeNe the explicit appearance of the SU,(2) algebra generators (which 
in this case are also the SU(2) generators). Notice that as D = eicP2 

(3.27) 

where 

vfi = V’ - D-’apD = V p  - i8.t (228) 

and the Lagrangian (3.20) is given by the formula 

L = -+v”v, + y’yi + $<,,[,* -iv@<,, (3.29) 

where E(.) describes the U( 1) field extending SU(7) to U(2). Indeed, one can show 
that if we put = 0 we recover the classical action for the SU(2) m model. On the 
other hand, we can generalise the Lagrangian (3.20) to 

L = --  i T r ( U t v ,  U ) ( U t  0’ U )  = -TIL!? 2 ,  fip (3.30) 

where we have introduced the U( 1) covariant derivative 

and so 

(3.31) 

(3.32) 

Then, if in particular, we choose the pure gauge mode for the A, field 

A,, = D-’a,D = it,, .1, (3.33) 

we find that (3.30) reduces to the conventional SU(2) U model. We see that the 
U( 1) gauge field A, leads to the appearance of the gauge invariance which allows 
us to set D = 1 in (3.27). 
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4 Outlook 

In this paper we have considered some particular solutions of U models taking wlues 
in quantum groups. Our main example corresponded to the U9(2) U model with 
qN = 1. The ‘classical’ fields of this model were described Ly 2N x 2N matrices, i.e. 
we considered the embedding U9(2) c U(2N). In the general case, however, the 
embeddings must involve infinite-dimensional U models i.e. U(m) or O(m). Indeed, 
the quantum group generators can be represented in terms of the Heisenberg algebra, 
which can be realised using infinite-dimensional matrices. In fact, it is only when we 
impose the relation 

[a, Q*] = 0 (4.1) 
that we can realise the generators of SU,(2) or U,(2) in terms of finite dimensional 
matrices. For SU,(2), equations (2.7) and (4.1) imply q2 = 1. For U9(2), equations 
(3.9) and (4.1) imply 141 = 1. 

We hope that our paper will be treated as a preliminary study of some aspects 
of sigma models taking values in a quantum group. Let us mention some of these 
aspects: 

(a) For a given quantum group one can consider any finite dimensional 
representation ( 2 ~ ; ~  -+ T,,(ujj)). For example, for the quantum group SU,(2) 
one can consider any (2j + 1) - dimensional representation e.g. [23]). If j = 1, this 
w u l d  give us the 0,(3) quantum group U model. 

(b) The action of the algebraic quantum group U model can be considered as the 
argument (after exponentiation) of the generalised Feynman path integral provided 
that the suitable formulae for the integration over the quantum group functions 
f( G,) are found. This problem bears some analogy with the Berezin integration 
rules for Grassmann algebras, and in the case of an arbitrary quantum group, is still 
to be determined . (See, however, [24] for a discussion of a simple twodimensional 
non-commutative case). 

(c) The concept of a quantum group U field should be useful when one wants 
to introduce the notion of generalised gauge fields, with [ocal gauge transformations 
described by quantum group parameters. In section 3 we have introduced the U( 1) 
gauge field but because of its Abelian nature the field’s non-commutative aspects 
were absent. It would be interesting to consider e.g. the U9(3) U model coupled to 
non-Abelian U,(2) gauge fields. This should allow us (by gauge fixing) to formulate 
the quantum group U model on the coset U9(3)/U,(2). 

Finally, we would like to add that although in this paper we have considered U 
fields taking values in non-commutative algebras the two best known choices, namely, 
the quaternionic algebra (see e.g. 1251) and the Grassmann algebra (see e.g. 1261) 
are finite dimensional. In the case of quantum groups, for a generic q, the algebra 
of non-commuting functions f ( G9) is infinite dimensional and so in order that we 
can extend e.g. the superfield formalism of supersymmetric theories to the case of 
quantum groups, the new formal tools still have to be developed. 
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